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Abstract. We consider the action of Hecke-type operators on Hilbert-
Siegel theta series attached to lattices of even rank. We show that
average Hilbert-Siegel theta series are eigenforms for these operators,
and we explicitly compute the eigenvalues.

1. Introduction

Siegel theta series help us study quadratic forms on lattices, as their
Fourier coefficients carry information about the structures of their sublat-
tices. Hecke operators help us study Fourier coefficients of modular forms.
Here we consider Hecke-type operators on Hilbert-Siegel theta series, show-
ing that the average Hilbert-Siegel theta series is an eigenform for these
operators, and we explicitly compute the eigenvalues.

With K a totally real number field with ring of integers O and L a lattice
of rank m over O, we do not know that L is a free O-module, but we do
have

L = A1x1 ⊕ · · · ⊕ Amxm
where A1, . . . ,Am are (nonzero) fractional ideals and x1, . . . , xm are vectors
in the space KL = Kx1 ⊕ · · · ⊕ Kxm. We equip L with a totally positive
quadratic form q (so q(x) � 0 for all x ∈ L). To build a degree n Hilbert-
Siegel theta series associated to L, we set L =

〈
A1, . . . ,Am

〉
Om,n where〈

A1, . . . ,Am
〉

is shorthand for diag{A1, . . . ,Am}. We set Q =
(
Bq(xi, xj)

)
where Bq is the symmetric bilinear form associated to q so that q(x) =
Bq(x, x). Then we set

θ(L; τ) = θ(L; τ) =
∑
U∈L

e{Q[U ]τ}

where Q[U ] = tUQU , τ is a suitable complex variable, and e{∗} is a suit-
able exponential function (defined below). Note that with U ∈ L and
(y1 · · · yn) = (x1 · · · xm)U , each yi lies in L and

(
Bq(yi, yj)

)
= Q[U ]; so

the Fourier coefficients of θ(L; τ) tell us how often L “represents” any given
quadratic form T of dimension n, meaning the number of sublattices of L
that inherit T as a quadratic form.

The goal of this paper is to show that when m is even with m = 2k,
the average Hilbert-Siegel theta series θ(genL; τ) (defined in Section 5) is
an eigenform for certain Hecke-type operators, yielding relations on average
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representation numbers of the quadratic form q on L. This generalizes what
was done in [7] and [8] where the number field was Q; many of the arguments
in this previous work are local, and those arguments generalize to the number
field setting quite easily. The main work in this paper is to realize the action
of the Hecke-type operators on θ(L; τ) in terms of L; this involves the use
and understanding of auxiliary theta functions, defined as follows.

For (nonzero) fractional ideals I1, . . . , In, we have the lattice

L′ = L
〈
I1, . . . , In

〉
=
〈
A1, . . . ,Am

〉
Om,n

〈
I1, . . . , In

〉
(so for U ′ ∈ L′ and (z1 · · · zn) = (x1 · · · xm)U ′, we have z` ∈ I`L for
1 ≤ ` ≤ n). We set

θ(L′; τ) =
∑
U ′∈L′

e{Q[U ′]τ}.

In Section 2, we first extend an algebraic trick of Eichler [3] to establish
an Inversion Formula (Theorem 2.4) for a very general theta series. From
hereon, we assume m is even with m = 2k; then with L′ as above, variations
on standard techniques show that θ(L′; τ) is a Siegel modular form of degree
n and weight k, for a group of some level N and character χ (defined below;
note that N and χ are determined by L, and θ(L′; τ) transforms under a
group determined by I1, . . . , In as well as invariants of L).

In Section 3 we show how θ(L; τ) and θ(L′; τ) are related through maps
S`(Q) (Q a fractional ideal); proving this requires the generalized Inversion
Formula (Theorem 2.4). In Section 4 we evaluate

θ(L; τ)|S1(P−1) · · ·Sj(P−1)Tj(P
2)

where P is a prime ideal not dividing the level of L and Tj(P
2) is a Hecke

operator with 1 ≤ j ≤ n (defined in Section 4); we consider this im-
age of θ(L; τ) as it lies in the same space as θ(L; τ). We first describe
θ(L; τ)|S1(P−1) · · ·Sj(P−1)Tj(P

2) in terms of lattices

Lr0,r2 = L
〈
P−1Ir0 , In−r0−r2 ,PIr2

〉
with r0, r2 varying so that r0 + r2 ≤ j (Proposition 4.1). We then parti-
tion each Lr0,r2 into equivalence classes, and partition each equivalence class
into orbits of a group Kr0,r2 (defined in Section 4) to get a computationally
convenient description of θ(Lr0,r2 ; τ) (Proposition 4.2). Then we can write
θ(L; τ)|S1(P−1) · · ·Sj(P−1)Tj(P

2) as a sum over lattices Ω ⊆ P−1L (Propo-
sition 4.4). As this sum involves incomplete character sums, we complete
them in Theorem 4.5 by replacing the operator S1(P−1) · · ·Sj(P−1)Tj(P

2)

by T̃j(P
2), a linear combination of the operators S1(P−1) · · ·S`(P−1)T`(P

2),
0 ≤ ` ≤ j. Then in Section 5 we appeal to the (primarily local) arguments in
[7] and [8] that carry over almost directly to the number field setting. With
{T ′j(P2) : 0 ≤ j ≤ n } a specific generating set for the algebra generated

by {T̃j(P2) : 0 ≤ j ≤ n } (where T ′0(P2) = T̃0(P2) is the identity map), we
show that for P a prime ideal not dividing the level of L,

θ(genL; τ)|T ′j(P2) = λj(P
2)θ(genL; τ)
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where

λj(P
2) =


N(P)j(k−n)+j(j−1)/2β(n, j)δ(k − 1, j) if χ(P) = 1 and j ≤ k,

N(P)j(k−n)+j(j−1)/2β(n, j)µ(k − 1, j) if χ(P) = −1 and j < k,

0 otherwise

(Corollary 5.4). Here β(n, j) is the number of j-dimensional subspaces of
an n-dimensional space over O/P, and

δ(k − 1, j) = (N(P)k−1 + 1) · · · (N(P)k−j + 1),

µ(k − 1, j) = (N(P)k−1 − 1) · · · (N(P)k−j − 1).

Note that while herein we assume m is even, in a subsequent paper we
demonstrate how to adjust these computations to allow m odd.

Notation. Throughout, we take K to be a totally real number field with
ring of integers O and different ∂. Except for Sections 2.1 and 2.2, we take
m ∈ Z+ to be even with m = 2k, and we fix fractional ideals A1, . . . ,Am
and vectors x1, . . . , xm so that L = A1x1 ⊕ · · · ⊕ Amxm is a fixed lattice.
We fix n ∈ Z+ and set

L =
〈
A1, . . . ,Am

〉
Om,n.

We take q to be a totally positive quadratic form on L whose associated sym-
metric bilinear form Bq satisfies q(x) = Bq(x, x); we set Q =

(
Bq(xi, xj)

)
.

When L′ is a free lattice with quadratic form q′ given by a matrix Q′

(relative to some O-basis for L′), we write L′ ' Q′, and we say L′ is isometric
to Q′. The discriminant of L′ is detQ′, which is well-defined up to squares
of units in O.

The complement of L is

L̃ = {v ∈ KL : tr(Bq(v, L)) ⊆ Z }

where tr denotes the trace from K to Q. So with (x′1 · · · x′m) = (x1 · · · xm)Q−1,

L̃ = ∂−1(A−1
1 x′1⊕ · · ·⊕A−1

m x′m). We define normL to be the fractional ideal
generated by {q(x) : x ∈ L }, and we define scaleL to be the fractional ideal
generated by {Bq(x, y) : x, y ∈ L }. Note that 2scaleL ⊆ normL ⊆ scaleL.
With N = N(L) = 1

2normL, we say L is even N-integral, meaning that for
all x, y ∈ L we have q(x) ∈ 2N and Bq(x, y) ∈ N. We define the level of L
to be

N = 4(normL · normL#)−1,

which is an integral ideal. For P a prime ideal, we have P - N if and only if
OPL is OPN-modular, meaning that with η′, αi ∈ K so that η′OP = N−1OP

and αiOP = AiOP (1 ≤ i ≤ m), the matrix η′Q[
〈
α1, . . . , αm

〉
] is invertible

over OP. (Note that when P|2O, the matrix η′Q[
〈
α1, . . . , αm

〉
] necessarily

has diagonal entries in 2OP.)
Let H(n) = {X + iY : X,Y ∈ Rn,nsym, Y > 0 }, where Rn,nsym denotes the set

of symmetric n× n matrices over R, and Y > 0 denotes that as a quadratic
form, Y is positive definite. With d the strict ideal class number of K and
ψ1, . . . , ψd the embeddings of K into R, for τ = (τ1, . . . , τh) ∈ Hd(n) and
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M ∈ Kn,n
sym, we set M (i) = ψi(M),

tr(Mτ) =

d∑
i=1

M (i)τi,

and we set e{Mτ} = exp(πiσ(tr(Mτ))) where σ denotes the trace of a
matrix.

In Section 2 we will see that with I1, . . . , In fractional ideals and L′ =
L
〈
I1, . . . , In

〉
, the theta series

θ(L′; τ) =
∑
U ′∈L′

e{Q[U ′]τ}

is a modular form for the group Γ0(N ; I1, . . . , In;N) defined as follows. Set
X =

〈
I1, . . . In

〉
, X−1 =

〈
I−1

1 , . . . I−1
n

〉
, and set

Γ0(N ; I1, . . . , In;N) = Γ
(n)
0 (N ; I1, . . . , In;N)

=

(
(N∂X)−1

X

)(
On,n On,n
NOn,n On,n

)(
N∂X

X−1

)
∩ Spn(K).

(Here Spn(K) denotes the group of 2n×2n symplectic matrices over K.) For
χ a character moduloN , we writeMk(Γ0(N ; I1, . . . , In;N), χ) to denote the
space of (Hilbert-Siegel) modular forms for the group Γ0(N ; I1, . . . , In;N)
with character χ, meaning the set of analytic functions from Hd(n) to C so

that for all γ =

(
A B
C D

)
∈ Γ0(N ; I1, . . . , In;N),

f |γ(τ) = χ(detD)f(τ)

where f |γ(τ) = det(N(Cτ+D))−kf((Aτ+B)(Cτ+D)−1) and N(Cτ+D) =∏d
i=1(C(i)τi+D

(i)). We will also see that the character associated to θ(L′; τ)
as a modular form is χL, defined as follows.

First take P to be a prime ideal with P - 2O. By Section 92 [5], a binary
unimodular OP-lattice is isometric to either a hyperbolic plane (given by
the matrix

〈
1,−1

〉
) or an anisotropic plane (given by the matrix

〈
1,−ω

〉
where ω is a non-square unit in OP); a dimension 2k unimodular OP-lattice
is isometric to either an orthogonal sum of k hyperbolic planes, or an or-
thogonal sum of k− 1 hyperbolic planes and an anisotropic plane. Thus the

Lengendre-type symbol
(
∗
P

)
given by(

y

P

)
=

{
1 if y is a square modulo P,

−1 otherwise

(where y ∈ OrP) allows us to distinguish these two types of dimension 2k
lattices over OP.

Next take P to be a prime ideal with P|2O; let U = O×P. By 93:11 [5], a

binary even unimodular lattice over OP is either a hyperbolic plane (given

by the matrix

(
0 1
1 0

)
) or an even anisotropic plane (given by the matrix(

2 1
1 2ε

)
where 1 + 4ε has quadratic defect 4OP; note that by Section 63A

[5], 1 − 4ε also has quadratic defect 4OP, so in particular, 1 − 4ε is not a
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square, and the set of units in OP with quadratic defect 4O is (1− 4ε)U2).
By 93:18(ii) [5], a dimension 2k even unimodular OP-lattice is isometric
to either an orthogonal sum of k hyperbolic planes, or an orthogonal sum
of k − 1 hyperbolic planes and an even anisotropic plane. We want to
choose a quadratic character modulo some power of P that will distinguish
a hyperbolic plane and an even anisotropic plane over OP. So we want to
construct a homomorphism ϕ : U/U2 → {±1} so that ϕ((1− 4ε)U2) = −1.

By 63:9 [5], |U/U2| = 2([OP : POP])ordP(2), so U/U2 is a 2-group with
at least 4 elements, in which every element is its own inverse. Thus with
|U/U2| = 2d, we can choose (1−4ε)U2 together with d−1 other elements to
generate U/U2, and hence we can build 2d−1 homomorphisms ϕ that map
(1 − 4ε)U2 to −1. Such a homomorphism ϕ corresponds to a choice of a
Kronecker-type symbol that (by 63:1 [5]) is a quadratic character modulo
4P with (

y

P

)
ϕ

= ϕ(yU2)

(y ∈ U). We fix a choice of ϕ and write
(
y
P

)
for
(
y
P

)
ϕ
.

Now suppose that P - N ; fix η′ ∈ N−1 so that η′OP = N−1OP, and for
1 ≤ i ≤ m, fix αi ∈ Ai so that αiOP = AiOP. Set

χ∗(P) = χ∗L(P) =

(
(−1)k(η′)m(α1 · · ·αm)2 detQ

P

)
;

note that by Section 93 of [5], when P|2O (and P - N ) we have that

(−1)k(η′)m(α1 · · ·αm)2 detQ lies in U2 or (1− 4ε)U2,

and hence χ∗(P) is independent of the choice of Kronecker-type symbol
chosen above.

Now we extend χ∗ completely multiplicatively to all fractional ideals I
that are relatively prime to N (where I relatively prime to N means that
for any prime P′|N , ordP′ I = 0). Then for y ∈ O with yO relatively prime
to N , we set

χ(y) = χL(y) = (N(sgn y))kχ∗(yO)

where N(sgn y) =
∏d
i=1 sgn(ψi(y)).

Note that for γ ∈ Γ0(N ; I1, . . . , In;N) we sometimes write χL(γ) to de-
note χL(detDγ).

We define the maps S`(Q) in Section 3, and the maps Tj(P
2) in Section

4.

2. Hilbert-Siegel theta series

In this section we will introduce Hilbert-Siegel theta series and prove the
transformation formula for such series. In order to do this we will first need
an inversion formula. We prove this by generalizing a trick of Eichler [3],
used in the Hilbert modular case. Note that we will be realizing a Hilbert-
Siegel theta series as a Siegel theta series over the rationals, and so by
Theorem 1.1.4 [1], we know the the Hilbert-Siegel theta series is analytic.
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2.1. Inversion formula: local notation and setup. Let γ1, . . . , γd be
an integral basis for O (meaning that O = Zγ1 + · · ·+ Zγd). As alluded to
above, we have fixed an ordering of the real embeddings ψ1, ..., ψd : K ↪→ R
and we write α(w) to denote ψw(α). The maps ψw induce linear embeddings
Ka,b ↪→ Ra,b for any a, b ≥ 1 by applying ψw component-wise. For ease of
notation we write U (w) = ψw(U) for U ∈ Ka,b and refer to these as the

conjugates of U . For U ∈ Ka,b we define tr(U) =
∑d

w=1 U
(w) (i.e. apply the

field trace on each entry).
Fix m,n ≥ 1 and set V = Km,n. Let M ∈ Km,m

sym be a totally positive
definite matrix, corresponding to a quadratic form q′ on Km. This also
gives rise to a symmetric bilinear form Bq′ on Km (taking the convention
that Bq′(x, x) = q′(x)). After scaling we may assume that M is integral with
even diagonal. Given U,W ∈ V we write M [U,W ] = tUMW ∈ Kn,n

sym and
M [U ] = tUMU ∈ Kn,n. Then considering V as both a K-vector space and
a Q-vector space gives quadratic forms MV,K,MV,Q respectively, given by
MV,K(U) = σ(M [U ]) and MV,Q(U) = σ(tr(M [U ])), where we recall that
σ is the matrix trace. The corresponding symmetric bilinear forms are
BV,K(U,W ) = σ(M [U,W ]) and BV,Q(U,W ) = σ(tr(M [U,W ])).

Now consider an O-lattice L′ ⊆ V of rank mn (where m is not necessarily
even). We do not assume that L′ is free. However restricting scalars to Z we
must obtain a free Z-lattice of rank mnd. Let U1, U2, ..., Umnd be a Z-basis
for L′. We may restrict the above quadratic forms to L′, writing ML′,K and
ML′,Q to emphasize this. Attached to L′ is a theta series:

θ(L′; τ) =
∑
U∈L′

eπiML,Q(Uτ) =
∑
U∈L′

e{ML′,K[U ]τ}.

We will prove an inversion formula for this very general theta series; then
we restrict our attention to the lattices described in the introduction, and
prove that these are Hilbert-Siegel modular forms. Note that since θ(L′; τ)
gets identified as a Siegel theta series, we know from Theorem 1.1.4 [1] that
θ(L′; τ) is analytic.

2.2. The inversion formula for θ(L′; τ). To relate θ(L′; τ) to θ(L̃′,−τ−1),
we first consider the quadratic form MV,Q in more detail. We will show that

there is a matrix Z1(τ) ∈ H(mnd) and an isomorphism φ′ : V → Qmnd

satisfying:

MV,Q[U ]τ = tφ′(U)Z1(τ)φ′(U),

i.e. that MV,Q is isometric to the quadratic form on Qmnd,1 with Gram
matrix Z1(I). For n = 1 this is precisely the idea behind Eichler’s trick for
establishing the inversion formula for Hilbert theta series.

Before stating the result we must make a few definitions. First we con-

struct the matrix G = (γ
(i)
j ) ∈ Rd,d. Given G we then form the Kronecker

product G′ = In ⊗G⊗ Im ∈ Rmnd,mnd.
Consider the linear map φ : Km,1 → Qmd,1 that sends column vector

u = t(u1, ..., um) =

m∑
i=1

uiei =
∑
i,j

ui,jeiγj
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to

(u1,1, u2,1, ..., um,1, u1,2, ..., um,2, ..., um,d) ∈ Qmd.

This map extends to a linear map φ : V → Qmnd via φ(U) = (φ(u1), ..., φ(un)),
where u1, ...,un are the columns of U . Let φ′(U) = tφ(U).

We see that there is a strong link between the conjugates of U ∈ V and
the vector G′φ′(U) ∈ Qmnd,1.

Lemma 2.1. For any U ∈ V with columns u1, ...,un we have

G′φ′(U) = t(v
(1)
1 ,v

(2)
1 , ...,v

(d)
1 ,v

(1)
2 , ...,v

(d)
2 , ...,v(d)

n ),

where vw = tuw.

Proof. Note that:

G′φ′(U) =


(G⊗ Im)tφ(u1)
(G⊗ Im)tφ(u2)

. . .
(G⊗ Im)tφ(un)

 .

It suffices to show that (G⊗Im)tφ(uw) = t(v
(1)
w , ...,v

(d)
w ) for each 1 ≤ w ≤

n. Letting φ(uw) = (u1,1,w, u2,1,w, ..., um,1,w, u1,2,w, ..., um,2,w, ..., um,d,w) the
claim follows since:

(G⊗ Im)tφ(uw) =


∑d

j=1 γ
(1)
j

∑m
i=1 ui,j,wei∑d

j=1 γ
(2)
j

∑m
i=1 ui,j,wei

...∑d
j=1 γ

(d)
j

∑m
i=1 ui,j,wei

 =


∑

i,j ui,j,weiγ
(1)
j∑

i,j ui,j,weiγ
(2)
j

...∑
i,j ui,j,weiγ

(d)
j



=


u

(1)
w

u
(2)
w

...

u
(d)
w

 = t(v
(1)
1 , ...,v(d)

w ).

�

We now wish to encode the conjugates M (i) and the τ (i) into an mnd ×
mnd matrix. In order to do this we construct the block matrix Z0(τ) =
(Zi,j(τ)) ∈ Cmnd,mnd, where for each 1 ≤ i, j ≤ n we have Zi,j(τ) =

diag(τ
(1)
i,j M

(1), ..., τ
(d)
i,j M

(d)) ∈ Cmd,md.
Letting Z1(τ) = tG′Z0(τ)G′ (which is in H(mnd)) we can now prove the

relation mentioned earlier.

Lemma 2.2. For any U ∈ V we have MV,Q[U ]τ = tφ′(U)Z1(τ)φ′(U).
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Proof. It is clear by the lemma that
tφ′(U)Z1(τ)φ′(U) = t(G′φ′(U))Z0(τ)(G′φ′(U))

=
∑
i,j

(v
(1)
i ,v

(2)
i , ...,v

(d)
i )Zi,j(τ)T (v

(1)
j ,v

(2)
j , ...,v

(d)
j )

=
∑
i,j

(v
(1)
i ,v

(2)
i , ...,v

(d)
i )


τ

(1)
i,j M

(1)u
(1)
j

τ
(2)
i,j M

(2)u
(2)
j

...

τ
(d)
i,j M

(d)u
(d)
j


=

d∑
w=1

∑
i,j

v
(w)
i M (w)u

(w)
j τ

(w)
i,j


=

d∑
w=1

∑
i,j

M [U ]
(w)
i,j τ

(w)
i,j


=

d∑
w=1

(σ(M [U ](w)τ (w)))

= σ

(
d∑

w=1

M [U ](w)τ (w)

)
= MV (Uτ).

In the third to last equality we use the identity σ(tAB) =
∑

i,j Ai,jBi,j with

the symmetry of M [U ](w). �

One also proves in a similar fashion thatBV,Q(U,W ) = tφ′(U)Z1(I)φ′(W ),
a fact we will need later.

Let A ∈ GLmnd(Q) be the matrix whose ith column is φ′(Ui). If U =∑mnd
r=1 urUr ∈ L′ then it is clear that φ′(U) = Au, where u = t(u1, ..., umnd) ∈

Zmnd. Thus by the lemma we see that ML′,Q[U ]τ = tuZ(τ)u, where Z(τ) =
tAZ1(τ)A. In particular the map φ′′ : V → Qmnd,1 given by φ′′(U) =
A−1φ′(U) gives an isometry between ML′,Q and the quadratic form on

Qmnd,1 with Gram matrix Φ(L′) = Z(I).
The following properties of Z(τ) will be useful.

Lemma 2.3. • −Z(τ)−1 = Φ(L′)−1Z(τ−1)Φ(L′)−1.

• det(−iZ(τ))−
1
2 = 1√

det(Z(I))
det(N(−iτ))−

m
2 , where N(τ) =

∏d
w=1 τ

(w).

Notice that the compliment of L′ is defined to be the largest O-lattice
satisfying tr(BV,K(U,W )) ∈ Z for all U ∈ L′ and hence is the dual of L′

with respect to MV,Q. Thus the Gram matrix of L̃′ with respect to the
above basis is Φ(L′)−1 = (BV,Q(Ui, Uj))i,j)

−1.
Given W ∈ V we define the shifted theta series:

θ(L′,W ; τ) =
∑
U∈L′

e{Q[U +W ]τ}.

We are now able to prove the following inversion formula for θ(L′,W ; τ).
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Theorem 2.4. (Inversion formula) For m,n ∈ Z+, V = Km,n, L′ a lattice
on V with quadratic form given by the totally positive matrix M ∈ Kn,n

sym and
W ∈ V , we have

θ(L′,W ; τ) =
1√

det(Φ(L′))
det(N(−iτ))−

m
2

∑
Y ∈L̃′

e{2 tWMY −M [Y ]τ−1}.

Proof. First suppose that M is even integral and W ∈ L̃′. Let φ′′(W ) = w0.
Then using the above lemma and discussion:

θ(L′,W ; τ) =
∑
U∈L′

eπiMV,Q[U+W ]τ

=
∑

u∈Zmnd

eπi(
t(u+w0)Z(τ)(u+w0)).

Since w0 ∈ Qmnd,1 is fixed and Z(τ) ∈ H(mnd), the right hand side is a
generalised theta series with variable Z(τ). The inversion formula for such
forms is known and applying this gives:

θ(L′,W ; τ) = det(−iZ(τ))−
1
2

∑
u∈Zmnd

eπi(−
tuZ(τ)−1u−2tuw0)

= det(−iZ(τ))−
1
2

∑
u∈Zmnd

eπi(
t(Z(I)−1u)Z(τ−1)(Z(I)−1u)−2tuw0)

= det(−iZ(τ))−
1
2

∑
w∈Z(I)−1Zmnd

eπi(
twZ(τ−1)w−2twZ(I)w0)

= det(Z(−iτ))−
1
2

∑
w∈Z(I)−1Zmnd

eπi(2
tw0Z(I)w−twZ(τ−1)w)

=
1√

det(Φ(L′))
det(N(−iτ))−

m
2

∑
Y ∈L̃′

eπi(2BV,Q(W,Y )−MV,Q[Y ]τ−1)

=
1√

det(Φ(L′))
det(N(−iτ))−

m
2

∑
Y ∈L̃′

e{2M [W,Y ]−M [Y ]τ−1}.

Now suppose M is not necessarily even integral and W is not necessarily

in L̃′. Take c ∈ O to be totally positive so that cM is even integral and

cW ∈ L̃′. Let L′′ denote the lattice L′ equipped with the scaled quadratic

form cM . Then L̃′′ = c−1L̃′, and hence from above we have

θ(L′,W ; τ)

= θ(L′′,W ; τ/c)

=
1√

det(Φ(L′′))
det(N(−iτ/c))−

m
2

∑
Y ∈L̃′

e{2cM [W, c−1Y ]− cM [c−1Y ]cτ−1}

=
1√

det(Φ(L′))
det(N(−iτ))−

m
2

∑
Y ∈L̃′

e{2M [W,Y ]−M [Y ]τ−1}.

�
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2.3. The transformation formula. From hereon we assume m is even
with m = 2k, and we focus on the lattice

L′ = L
〈
I1, . . . , In

〉
=
〈
A1, . . . ,Am

〉
Om,n

〈
I1, . . . , In

〉
where I1, . . . , In are (nonzero) fractional ideals fixed throughout this section,
and L′ is equipped with the quadratic form Q as fixed in Section 1. Using the
inversion formula, we prove the transformation formula and thereby show
that θ(L′; τ) ∈Mk(Γ0(N ; I1, . . . , In;N), χL). For this, we note that

L̃′ = L̃
〈
I−1

1 , . . . , I−1
n

〉
= ∂−1Q−1

〈
A−1

1 , . . . ,A−1
m

〉
Om,n

〈
I−1

1 , . . . , I−1
n

〉
.

Proposition 2.5. Let L′ be as above, and suppose

γ =

(
A B
C D

)
∈ Γ(N ; I1, . . . , In;N)

with detD 6= 0. Then

θ(L′; (Aτ +B)(Cτ +D)−1)

= det(N(−iτ(Cτ +D)−1D))−k det(N(−iτ))k

·

 ∑
U∈L′/L′ tD

e{Q[U ]BD−1}

 θ(L′; τ).

Proof. As one can check, we have

(Aτ +B)(Cτ +D)−1 = tD−1 tB + tD−1τ(Cτ +D)−1.

For U, Y ∈ L′, using that tD−1B = tBD−1, σ(MN) = σ(NM) and σ(M) =
σ( tM) for M,N ∈ Kn,n, we find that

σ(Q[U + Y tD] tD−1B) ∈ σ(Q[U ] tD−1B + 2∂−1),

and so e{Q[U + tDY ] tD−1 tB} = e{Q[U ] tD−1 tB}. Also, since

D ∈
〈
I1, . . . , In

〉
On,n

〈
I−1

1 , . . . , I−1
n

〉
,

we know that detD ∈ O and that L′ tD ⊆ L′. Hence using the Inversion
Formula and that tBD is symmetric, we have

θ(L′; (Aτ +B)(Cτ +D)−1)

=
∑

U∈L′/L′ tD

e{Q[U ] tD−1 tB}θ(L′, U tD−1; τ(Cτ +D)−1D)

=
1√

Φ(L′)
det(N(−iτ(Cτ +D)−1D))−k

·
∑

U∈L′/L′ tD

e{Q[U ]BD−1}
∑
Y ∈L̃′

e{2 tY QU tD−1 −Q[Y ](D−1C + τ−1)}

=
1√

Φ(L)
det(N(−iτ(Cτ +D)−1D))−k

∑
Y ∈L̃′

e{−Q[Y ]τ−1}

·

 ∑
U∈L′/L′ tD

e{Q[U ]BD−1 + 2 tY QU tD−1 −Q[Y ]D−1C}

 .
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We claim that this last sum on U is independent of Y . First, using that
D tA− C tB = I = tDA− tBC) we have that

e{−Q[UB + Y ]D−1C} = e{Q[U ]BD−1 + 2 tY QU tD−1 −Q[Y ]D−1C}.

We know that
〈
A1, . . . ,Am

〉
Q
〈
A1, . . . ,Am

〉
⊆ NOm,m, so for U ∈ L′, we

have UB ∈ L̃′; we also have L′ tD ⊆ L′. For fixed Y ∈ L̃′, we show that

UB + Y varies over L̃′/L̃′D as U varies over L′/L′ tD; to do this, we show

that for U ∈ L′, we have UB ∈ L̃′D if and only if U ∈ L′ tD.
We will argue locally. We first observe that for P a prime with P - detD,

we have

OPL′ tD = OPL′, OPL̃′D = OPL̃′.

Thus we need to show that for any prime P| detD, we have U ∈ OPL′ tD if

and only if UB ∈ L̃′D. We first fix some notation.
Choose β, η, αi, µ` ∈ K so that for every prime P| detD, we have

βOP = ∂OP, ηOP = NOP, αiOP = AiOP, µ`OP = I`OP

(1 ≤ i ≤ m, 1 ≤ ` ≤ n). Set α = (α1, . . . , αm), µ = (µ1, . . . , µn),(
A′ B′

C ′ D′

)
=

(
βηµ

µ−1

)(
A B
C D

)(
β−1η−1α−1

µ−1

)
,

U ′ = α−1Uµ−1, Q′ = η−1αQα.

Now fix a prime P| detD. We have

(
A′ B′

C ′ D′

)
∈ Spn(OP) with N|C ′,

U ′ ∈ Om,nP , and Q′ ∈ Om,mP . Let L′P = OPL′, L̃′P = OPL̃′; so L′P = αOm,nP µ,

L̃′P = β−1Q−1α−1Om,nP µ−1. Also, U ∈ L′P tD if and only if U ′ ∈ Om,nP
tD′,

and UB ∈ L̃′PD if and only if Q′U ′B′ ∈ Om,nP D′. Since P|detD and hence

P - N , we have that Q′ is unimodular over OP (see the discussion in Section

1); thus UB ∈ L̃′PD if and only if U ′B′ ∈ Om,nP D′. Choose E,G ∈ GLn(OP)
so that

E tD′G =

(
Ir 0
0 πD1

)
where r = rankPD

′ and πOP = POP (here rankPD
′ means the rank of D′

as a matrix over OP/POP). Write

E tB′ tG−1 =

(
B00 B01

B′10 B11

)
where B00 is r× r. By the symmetry of tB′D′, we get B01 ≡ 0 (POP), and

by the fact that

(
A′ B′

C ′ D′

)
∈ SL2n(OP), we find that B11 is invertible over

OP. Now take

X = G−1B′ tE +

(
I − tB00

0

)
tGD′ tE =

(
I πB01

tD1
tB01

tB11

)
;
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so X is an invertible matrix in On,nP . Also, an easy check shows that
tX( tGD′ tE) = (E tD′G)X. Then

U ′B′ ∈ Om,nP D′ ⇐⇒ U ′GX ∈ Om,nP ( tGD′ tE)

⇐⇒ U ′G ∈ Om,nP
tX−1(E tD′G)

⇐⇒ U ′ ∈ Om,nP
tX−1E tD′ = Om,nP

tD′.

Since this holds for all prime ideals P|detD, we see that as U varies over

L′/L′ tD, UB + Y varies over L̃′/L̃′D.
Thus in our last expression for θ(L′; (Aτ+B)(Cτ+D)−1), we can simplify

the sum on U (eliminating the terms with Y ), and reverse the order of
summation. Then another application of the Inversion Formula (Theorem
2.4) yields the proposition. �

Now we evaluate the sum on U in the above propostion.

Proposition 2.6. With the notation be as in the previous proposition, we
have ∑

U∈L′/L′ tD

e{Q[U ]BD−1} = N(detD)k χL(detD)

where χL is as defined in the introduction.

Proof. Let the notation be as in the previous proof. With D = (detD)O,
we have ∑

U∈L′/L′ tD

e{Q[U ]BD−1}

=
∑

U∈Om,n/Om,n tD

e
{
Q
[〈
α1, · · · , αm

〉
U
〈
µ1, · · · , µn

〉]
BD−1

}
=

∑
U∈Om,n/Om,n tD′

e{β′Q′[U ]B′(D′)−1}

= N(D)m(1−n)
∑

U∈Om,n/DOm,n

e{β′Q′[U ]B′(D′)−1}

=
∏
Pe‖D

N(Pe)m(1−n)
∑

U∈P−eDOm,n/DOm,n

e{β′Q′[U ]B′(D′)−1}.

Now rather standard techniques (such as those used in Section 5 [10], which
are local arguments) can be used to reduce this computation to computations
of more manageable sums.

For P - 2, we are left with computing sums of the shape∑
u∈Om,1/POm,1

e{Q[u]ω}

where ω ∈ ∂−1P−1 with ωOP = ∂−1P−1OP. We replace u by Eu where
E ∈ SLn(O) so that Q[E] ≡ 2Q′ (P) where Q′ ∈ Om,m is diagonal modulo
P; this reduces the computation to that of evaluating

∑
x∈O/P e{2x2bω}

where b ∈ O rP, and now standard techniques can be used to show that∑
x∈O/P

e{2x2bω} =

(
b

P

) ∑
x∈O/P

e{2x2ω}
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and  ∑
x∈O/P

e{2x2ω}

2

=

(
−1

P

)
N(P).

Suppose P|2; then u can be replaced by Eu where E ∈ SLn(O) so that

modulo 2P, Q[E] is either an orthonal sum of k copies of the matrix

(
0 1
1 0

)
,

or it is the orthogonal sum of k−1 copies of

(
0 1
1 0

)
and 1 copy of

(
2 1
1 2ε

)
where ε ∈ O so that in OP, 1−4ε has quadratic defect 4OP. Thus the sums
to be evaluated are now∑

x,y∈O/P

e{2xyω},
∑

x,y∈O/P

e{2(x2 + xy + εy2ω)}

where ω ∈ ∂−1P−1 with ωOP = ∂−1P−1OP. To evaluate the first sum, we
sum first on x; when x 6∈ P, this is a complete character sum yielding 0, and
when x ∈ P we get N(P). Now consider the second sum; when x 6∈ P, we
replace y by xy and recall that as x varies over (O/P)×, so does x2. Hence
we get ∑

x,y∈O/P

e{2(x2 + xy + εy2)ω}

=
∑

x∈(O/P)×

∑
y∈O/P

e{2x2(1 + y + εy2)ω}+
∑

y∈O/P

e{2εy2ω}

=
∑

y∈O/P

∑
x∈(O/P)×

e{2x(1 + y + εy2)ω}+
∑

y∈O/P

e{2εyω}.

We have
∑

y∈O/P e{2εyω} = 0, as this sum on y is a complete character

sum (with a nontrivial character). Similarly,∑
x∈O/P

e{2x(1 + y + εy2)ω} = 0

whenever 1 + y + εy2 6∈ P. Since 1 − 4ε has quadratic defect 4OP in OP,
one checks that we cannot have 1 + y + εy2 ∈ P for any y ∈ O. Thus∑

x,y∈O/P

e{2(x2 + xy + εy2)ω} = −N(P).

The proposition now follows from the definition of χL, as described in the
introduction. �

Now we can state the main result of this section.

Theorem 2.7. (Transformation Formula) Let L′ = L
〈
I1, . . . , In

〉
, γ =(

A B
C D

)
∈ Γ(N ; I1, . . . , In;N), and let χL be as defined in the introduction.

We have

θ(L′; τ)|γ = χL(detD) θ(L′; τ).



14 DAN FRETWELL AND LYNNE WALLING

Proof. When detD 6= 0, this is proved by the previous two propositions. So
suppose that detD = 0. This can only happen in the case that N = O,
in which case χL is the trivial character modulo O. Using that the rank of
(C D) is n and C tD is symmetric, one can find G ∈ GLn(O) and W ∈ On,n
so that with (

A′ B′

C ′ D′

)
=

(
A B
C D

)(
tG−1 W

0 G

)
,

detD′ 6= 0. Thus

θ(L′; τ) = θ(L′; τ)|
(
A′ B′

C ′ D′

)
,

and so

θ(L′; τ) = θ(L′; τ)|
(
tG−1 W

0 G

)−1

= θ(L′; τ)|
(
A′ B′

C ′ D′

)
.

Thus the theorem follows. �

3. Action of the S`(Q) operators on theta series

In [2], when N = O and χL = 1, we defined linear maps whose composi-
tion takes

M(n)
k (Γ0(O;Q−1

1 I1, · · · ,Q−1
n In;N)) to M(n)k(Γ0(O; I1, . . . , In;N)).

Here we generalize these maps to allow nontrivial level and character. Then
we evaluate the action of the maps on theta series.

Fix ` where 1 ≤ ` ≤ n, and fix a fractional ideal Q so that for every prime
ideal P|N , we have ordP(Q) = 0. With I1, . . . , In fixed fractional ideals,
set

Γ′ = Γ0(N ; I1, . . . , In;N) and Γ′′ = Γ0(N ; I ′1, . . . , I ′n;N)

where

I ′i =

{
Ii if i 6= `,

Q−1I` otherwise.

Take (
w x
y z

)
∈
(

Q Q(I2
`N∂)−1

Q−1NI2
`N∂ Q−1

)
so that wz − xy = 1. Set

W =
〈
I`−1, w, In−`

〉
, X =

〈
0`−1, x, 0n−`

〉
,

Y =
〈
0`−1, y, 0n−`

〉
, Z =

〈
I`−1, z, In−`

〉
,

δ =

(
W X
Y Z

)
.

A straightforward check shows that δΓ′δ−1 ⊆ Γ′′ and δ−1Γ′′δ ⊆ Γ′.

We will use δ to define S`(Q) :M(n)
k (Γ′′, χ)→M(n)

k (Γ′, χ). Toward this,
we prove following.
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Proposition 3.1. Let L = A1x1 ⊕ · · · ⊕ Amxm, L =
〈
A1, . . . ,Am

〉
Om,n be

as fixed in Section 1, with q the quadratic form on L given by the matrix Q
(relative to the basis (x1, . . . , xm)). With Ij, I ′j (1 ≤ j ≤ n) and δ as above,
set

L′ = L
〈
I1, · · · , In

〉
and L′′ = L

〈
I ′1, · · · , I ′n

〉
.

Then

θ(L′′; δτ) = det(N(−iτ(Y τ + Z)−1Z))−m/2 det(N(−iτ))m/2

·
∑

U∈L′′/L′Z

e{Q[U ]XZ−1}θ(L′; τ).

Proof. We have

θ(L′′; δτ) =
∑

U∈L′′/L′ Z

e{Q[U ]XZ−1}θ(L′, UZ−1; τ(Y τ + Z)−1Z).

Then we follow the argument of Proposition 2.5 to finish proving this propo-

sition. (To see that with U ′ ∈ L̃′, UX + U ′ varies over L̃′/L̃′′Z as U
varies over L′′/L′Z: take a prime ideal P and set e = ordPQ, and take
π ∈ P so that OPπ = OPP. Take z′ ∈ OP so that z = πez′. Then
with Z ′ =

〈
I`−1, z

′, In−`
〉
, we have natural isomorphisms OPL′′/OPL′Z ≈

OPπ
−eI`L/OPπ

−eI`Lz′ and OPL̃′/OPL̃′′Z ≈ OPI−1
` L̃/OPI−1

` L̃z′. Then
the argument used in Proposition 2.1 [6] show that UX + U ′ varies over

L̃′/L̃′′Z as U varies over L′′/L′Z. So the sum on U is independent of U ′

and hence can be taken with U ′ = 0.) �

Definition. Let Q, δ, Γ′, and Γ′′ be as at the beginning of this section.
Take f ∈M(n)k(Γ

′′, χ). We define

f |S`(Q) = χ(δ) f |δ.

One easily verifies that if one changes the choice of δ (subject to the condi-

tions placed on this choice), S`(Q) is well defined. Also, for

(
A B
C D

)
∈ Γ′

and

(
A′ B′

C ′ D′

)
= δ

(
A B
C D

)
δ−1, we have detD′ ≡ detD (N ). Thus

S`(Q) :M(n)k(Γ
′′, χ)→M(n)k(Γ

′, χ).

Also note that for 1 ≤ `′ ≤ n and Q′ a fractional ideal with order 0 at any
prime ideal dividing N , we have S`(Q)S`′(Q

′) = S`′(Q
′)S`(Q).

Now the techniques used to prove Propositions 2.5 and 2.6 give us the
following.

Theorem 3.2. Let Q be a fractional ideal so that for every prime ideal
P|N , we have ordPQ = 0. With L′,L′′ as in Proposition 3.1 and S(Q)
defined as above, we have

θ(L′′; τ)|S`(Q) = N(Q)kχ∗L(Q) θ(L′; τ).
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4. Action of the Hecke operators Tj(P
2) on theta series

Recall that we have fixed the lattice L. For the duration of this section,
we fix an integer j with 1 ≤ j ≤ n, and we fix a prime ideal P with P - N .
We evaluate

θ(L; τ)|S1(P−1) · · ·Sj(P−1)Tj(P
2),

which lies in the same space as θ(L; τ).

Local notation. Throughout this section, we take β ∈ ∂, β′ ∈ ∂−1 so that
ββ′ ≡ 1 (P), η ∈ N, η′ ∈ N so that ηη′ ≡ 1 (P), π ∈ P, π′ ∈ P−1 so that
ππ′ ≡ 1 (P). Also, with r0, r2 ∈ Z≥0 so that r0 + r2 ≤ j, r1 = j − r0 − r2,
we set

P ′r2 = P ′j;r2 =

Ij−r2 0 In−j
Ir2 0

 , Pr2 = Pj;r2 =

(
P ′j;r2

P ′j;r2

)
,

Xr0,r2 = X(n)
r0,r2 =

〈
PIr0 , In−r0−r2 ,P

−1Ir2
〉
, Xr1 = X(r1+n−j)

r1 =
〈
PIri , In−j

〉
,

and

Kr0,r2 = K(n)
r0,r2 = Xr0,r2GLn(O)X−1

r0,r2 ∩GLn(O),

K′r1 = K(n−r0−r2)
r1 = X ′r1GLn−r0−r2(O)(X ′r1)−1 ∩GLn−r0−r2(O).

Using this notation, we have the following.

Proposition 4.1. With r0, r2 non-negative integers so that r0 + r2 ≤ j, set

Lr0,r2 = L
〈
P−1Ir0 , In−r0−r2 ,PIr2

〉
.

Then with r0, r2 varying subject to the above conditions, we have

θ(L; τ)|S1 · · ·Sj(P−1)Tj(P
2) =

∑
r0,r2

θ(L; τ)|S1 · · ·Sj(P−1)Tj;r0,r2(P2)

where

N(P)kjχ∗L(P)jθ(L; τ)|S1 · · ·Sj(P−1)Tj;r0,r2(P2)

= χL(detP ′r2)
∑
Y ′,G

χL(detG) θ(Lr0,r2 ; τ)|
(
G−1 Y ′ tG

tG

)
|Pr2 ;

here Y ′, G are defined as follows. We have(
G−1 Y ′ tG

tG

)
=

(
I W

I

)(
I Y

I

)(
(G0G1)−1

t(G0G1)

)
where

W =

0r0
W ′

0n−j−r0

 , Y =

Y0 Y2 0
tY2

0


with W ′ ∈ (N∂P)−1Or1,r1sym so that ηδπW ′ varies over (Or1,r1sym /POr1,r1sym )×,
Y0 ∈ (N∂)−1Or0,r0sym so that ηδY0 varies over Or0,r0sym /P2Or0,r0sym , and Y2 ∈
(N∂)−1Or0,n−r2 so that ηδY2 varies over Or0,n−r2/POr0,n−r2;

G1 =

0r0
G′1

0n−j−r0
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with G′1, G0 varying subject to the conditions G′1 ∈ GLn−r0−r2/K′r1 , and

G0 ∈ GLn(O)/ tKr0,r2 (so G−1
0 varies over Kr0,r2\GLn(O)).

Proof. We know from Section 3 that θ(L; τ)|S1 · · ·Sj(P−1) lies in the space
Mk(Γ0(N ; I1, · · · , In;N), χL) where I` = P−1 for 1 ≤ ` ≤ j, I` = O other-
wise. It is simple to generalize [2] to find matrices for

Tj(P
2) :Mk(Γ0(N ; I1, · · · , In;N), χL)→Mk(Γ0(N ;O, · · · ,O;N), χL).

(To be well-defined, we precede the action of a matrix

(
A B
C D

)
by χL(detD).

Also, to more easily describe the matrices from [2], we use the notation from
[9].) From this, and recalling that χL is quadratic, we have

θ(L; τ)|S1 · · ·Sj(P−1)|Tj(P2)

=
∑
Y ′,G

χL(detG) θ(L; τ)|S1 · · ·Sj(P−1)|Sr0+1 · · ·Sj−r2(P)Sj−r2+1 · · ·Sj(P2)

|
(
G−1 Y ′ tG

tG

)
.

We also know that θ(L; τ)|Pr2 = χL(detP ′r2) θ(L; τ), and

θ(L; τ)|Pr2 |S1 · · ·Sr0(P−1)Sj−r2+1 · · ·Sj(P)| tPr2
= θ(L; τ)|S1 · · ·Sr0(P−1)Sn−r2+1 · · ·Sn(P).

Also, from Theorem 3.2, we know that

θ(L; τ)|S1 · · ·Sr0(P−1)Sn−r2+1 · · ·Sn(P)

= N(P)k(r2−r0)χ∗L(P)r2−r0 θ(Lr0,r2 ; τ).

From this the proposition easily follows. (Recall that χL is quadratic.) �

Our next step in analyzing θ(L; τ)|S1 · · ·Sj(P−1)Tj(P
2) is to find a more

convenient way to write θ(Lr0,r2 ; τ). Toward this, we introduce some termi-
nology.

Terminology. Fix non-negative integers r0, r2 so that r0 + r2 ≤ j. Take
U ∈ Lr0,r2 . With (y1 · · · yn) = (x1 · · · xm)U , set

Ω(U) = Oy1 ⊕ · · · ⊕ Oyn
(an external direct sum). We call Ω(U) the (free) lattice associated to U ,
and we call (y1 · · · yn) the basis determined by U ; note that by the definition
of L and Lr0,r2 , we have

yi ∈


P−1L if 1 ≤ i ≤ r0,

L if r0 < i ≤ n− r2,

PL otherwise.

For U,U ′ ∈ Lr0,r2 , we say U and U ′ are equivalent in Lr0,r2 , and write
U ∼ U ′, if there is some G ∈ GLn(O) so that U ′ = UG. Note that when
U ∼ U ′ for U,U ′ ∈ Lr0,r2 , we have Ω(U) = Ω(U ′).

Proposition 4.2. Fix non-negative integers r0, r2 so that r0 + r2 ≤ j.
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(a) Take U ∈ Lr0,r2. There are invariants d0, d1 of the equivalence class
of U and a representative Uy for this equivalence class so that with

y = (y1 · · · yn) = (x1 · · · xm)Uy

we have

yi ∈


P−1Lr L if 1 ≤ i ≤ d0,

LrPL if d0 < i ≤ d0 + d1,

PL otherwise

where y1, . . . , yd0+d1 are linearly independent in the vector space KL.
We call such an equivalence class representative Uy a reduced repre-
sentative, and we call such a basis y a reduced basis; to ease notation,
we write Ω(y) to denote Ω(Uy).

(b) Take U ∈ Lr0,r2 and take y = (y1 · · · yn) to be a reduced basis for
Ω(U); take Uy ∼ U so that y = (x1 · · · xm)Uy. With d0, d1 the in-

variants associated to the equivalence class of U (as defined in (a)),
set

∆ = ∆(y) = Py1 ⊕ · · · ⊕Pyd0 ⊕Oyd0+1 ⊕ · · · ⊕ Oyd0+d1

⊕P−1yd0+d1+1 ⊕ · · · ⊕P−1yn;

we call ∆(y) the formal intersection of P−1Ω(y) and L. Then with
Ω = Ω(y), the equivalence class of Uy in Lr0,r2 is partitioned into
Kr0,r2-orbits of the form UyGy,Λ ·Kr0,r2 where the parameter Λ varies

over all lattices so that PΩ ⊆ Λ ⊆ ∆ with mult{Ω:Λ}(P) = r0 and

mult{Ω:Λ}(P
−1) = r2. Further, Gy,Λ ∈ GLn(O) is chosen so tha

UyGy,Λ ∈ Lr0,r2 and with

(z1 · · · zn) = (y1 · · · yn)Gy,Λ = (x1 · · · xm)UyGy,Λ,

we have

Λ = Pz1 ⊕ · · · ⊕Pzr0 ⊕Ozr0+1 ⊕ · · · ⊕ Ozn−r2
⊕P−1zn−r2+1 ⊕ · · · ⊕P−1zn.

(c) Let y vary so that Uy varies over the equivalence class representatives

in Lr0,r2, and for each y, let Λ = Λ(y) vary as in (b). Then with
Gy,Λ ∈ GLn(O) as in (b) and E varying over Kr0,r2, we have

θ(Lr0,r2 ; τ) =
∑
y,E

∑
Λ

e{Q[UyGy,ΛE]τ}.

Proof. (a) Fix U ∈ Lr0,r2 ; recalling that L = A1x1 ⊕ · · · ⊕ Amxm, let
(y′1 · · · y′n) = (x1 · · · xm)U and let Ω′ = Oy′1 + · · · + Oy′n. We construct
a representative for the equivalence class of U in two steps.

Step 1. For x ∈ P−1L, let x = x + L and let Ω′ denote the image of Ω′

in P−1L/L (a vector space over O/P). Thus {y′1, . . . , y′r0} spans Ω′. Let

d0 = dim Ω′; thus d0 is an invariant of the equivalence class of U in Lr0,r2 .
Take E′0 ∈ SLr0(O/P) so that with

(y1 · · · yd0 0 · · · 0) = (y′1 · · · y′r0)E′0,
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(y1, . . . , yd0) is a basis for Ω′. Now take E0 ∈ SLr0(O) so that E0 ≡ E′0 (P)
and set

(y1 · · · yd0 y′′d0+1 · · · y′′r0) = (y′1 · · · y′r0)E0.

Step 2. For x ∈ L, now let x = x + PL and let Ω′ ∩ L denote the image
of Ω′ ∩ L in L/PL. Thus with π ∈ P r P2 (as throughout this section),
{πy1, . . . , πyd0 , yd0+1, . . . , yn−d0−r2} spans Ω′ ∩ L with πy1, . . . , πyd0 linearly

independent. Let d0 + d1 = dim Ω′ ∩ L; so d0 and d1 are invariants of the
equivalence class of U in Lr0,r2 . We extend (πy1, . . . , πyd0) to an ordered
basis

(πy1, . . . , πyd0 , yd0+1, . . . , yd0+d1)

for Ω′ ∩ L where yd0+1, . . . , yd0+d1 lie in the span of

{y′′d0+1, . . . , y
′′
r0 , y

′
r0+1, . . . , y

′
n−r2}.

Choose E′1 ∈ SLn−d0−r2(O/P) so that

(yd0+1 · · · yd0+d1 0 · · · 0) = (y′′d0+1 · · · y′′r0 y
′
r0+1, · · · , y′n−r2)E′1.

Take E1 ∈ SLn−d0−r2(O) so that E1 ≡ E′1 (P), and set

E =
〈
E0, In−r0

〉〈
Id0 , E1, Ir2

〉
, y = (y1 · · · yn) = (x1 · · · xm)UE,

and set Uy = UE. Hence we have

yi ∈


P−1Lr L if 1 ≤ i ≤ d0,

L if d0 < i ≤ d0 + d1,

PL if d0 + d1 < i ≤ n.

We claim that y1, . . . , yd0+d1 are linearly independent. To see this, suppose
that u1y1 + · · · + ud0+d1yd0+d1 = 0, ui ∈ K, not all 0. Thus this equality
holds over KP, and so multiplying by a suitable power of π, we can assume
that all the ui ∈ OP with at least one ui a unit in OP. Thus in P−1L/L, we
have u1y1 + · · ·+ud0yd0 = 0, and hence u1, . . . , ud0 ∈ P since y1, . . . , yd0 are

linearly independent in P−1L/L. Thus we rewrite ui as πu′i for 1 ≤ i ≤ d0.
So in L/PL, we have u′1 = · · · = u′d0 = ud0+1 = · · · = ud0+d1 = 0 by

the choice of basis for Ω′ ∩ L. But this shows that all the ui lie in P, a
contradiction.

(b) First suppose Λ is a lattice with PΩ ⊆ Λ ⊆ ∆ and mult{Ω:Λ}(P) = r0,

mult{Ω:Λ}(P
−1) = r2. Choose G′ ∈ SLn(OP) so that with (z′1 · · · z′n) =

(y1 · · · yn)G′, we have

OPΛ = POPz
′
1 ⊕ · · · ⊕POPz

′
r0 ⊕OPz

′
r0+1 ⊕ · · · ⊕ OPz

′
n−r2

⊕P−1OPz
′
n−r2+1 ⊕ · · · ⊕P−1OPz

′
n.

Now choose G ∈ SLn(O) so that G ≡ G′ (P2OP). Set (z1 · · · zn) =
(y1 · · · yn)G. Thus Ω = Oz1 ⊕ · · · ⊕ Ozn; set

Λ′ = Pz1 ⊕ · · · ⊕Pzr0 ⊕Ozr0+1 ⊕ · · · ⊕ Ozn−r2
⊕P−1zn−r2+1 ⊕ · · · ⊕P−1zn.

An easy check shows that OPΛ′ = OPΛ; for any prime P′ 6= P, we have
OP′Λ

′ = OP′Ω = OP′Λ. Thus Λ′ = Λ. Also, since Λ ⊆ ∆, one easily checks
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that UyG ∈ Lr0,r2 . Thus Λ corresponds to an element in the equivalence
class of Uy.

Now take E,G ∈ GLn(O) so that UyE,UyG ∈ Lr0,r2 . Set

(w1 · · · wn) = (y1 · · · yn)E, (z1 · · · zn) = (y1 · · · yn)G,

ΛE = Pw1 ⊕ · · · ⊕Pwr0 ⊕Owr0+1 ⊕ · · · ⊕ Own−r2
⊕P−1wn−r2+1 ⊕ · · · ⊕P−1wn,

ΛG = Pz1 ⊕ · · · ⊕Pzr0 ⊕Ozr0+1 ⊕ · · · ⊕ Ozn−r2
⊕P−1zn−r2+1 ⊕ · · · ⊕P−1zn.

Using that (z1 · · · zn) = (w1 · · · wn)E−1G, one easily checks that ΛE = ΛG
if and only if E−1G ∈ Kr0,r2 . This proves (b).

(c) This claim follows easily from (a) and (b). �

We are almost ready to more precisely describe θ(L; τ)|S1 · · ·Sj(P−1)Tj(P
2),

in anology with Proposition 1.4 of [theta I]. But first, we need to define some
more notation.

Definitions. Fix non-negative integers r0, r2 so that r0 + r2 ≤ j. Fix a
reduced representative U ∈ Lr0,r2 ; set Ω = Ω(U) and y = (x1 · · · xm)U (so
y is a reduced basis for Ω).

(a) We define an exponential sum associated to Ω by

e{Ω, τ} =
∑
C

e{Q[UC]τ}

where C varies over GLn(O).
(b) We say that Ω is even N-integral if, for every z, z′ ∈ Ω, we have

q(z) ∈ 2N and Bq(z, z
′) ∈ N. Note that when Ω ∈ Lr0,r2 with

Ω ∼ Ω′, Ω′ is even N-integral if and only if Ω is even N-integral.
(c) Suppose Ω is even N-integral, ∆ is the formal intersection of Ω and

L (as defined in Proposition 4.2), and Λ is a lattice so that PΩ ⊆
Λ ⊆ ∆ with mult{Ω:Λ}(P) = r0, mult{Ω:Λ}(P

−1) = r2. Take Gy,Λ
as defined in Proposition 4.2. Set r1 = j − r0 − r2. For each lattice
Λ1 ⊆ Λ so that Λ1 +P(Ω+Λ) has dimension r1 in (Ω∩Λ)/P(Ω+Λ),
fix UΛ1 ∈ Om,r1 so that

Λ1 + P(Ω + Λ) = (Ov1 ⊕ · · · ⊕ Ovr1) + P(Ω + Λ)

where (v1 · · · vr1) = (x1 · · · xm)UΛ1 . Set

α′j(Ω,Λ) =
∑

Λ1,W ′

e{Q[UΛ1 ]W ′}

where πηδW ′ varies over (Or1,r1sym /POr1,r1sym )×. Note that when r0+r2 =
j, α′j(Ω,Λ) = 1, and when r0 + r2 > j, α′j(Ω,Λ) = 0.
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Proposition 4.3. Fix non-negative integers r0, r2 so that r0 +r2 ≤ j. Then
with Y ′, G varying as in Proposition 4.1, we have∑

Y ′,G

χL(detG)θ(Lr0,r2 ; τ)|
(
G−1 Y ′ tG

tG

)
= N(P)r0(n−r2+1)

∑
y,Λ

α′j(Ω(y),Λ) e{Ω(y), τ}

where y varies so that Uy varies over a representatives for the equivalence

classes in Lr0,r2 where Ω(y) is even N-integral; Λ varies over all lattices so

that PΩ(y) ⊆ Λ ⊆ ∆(y) with mult{Ω(y),Λ}(P) = r0 and mult{Ω(y),Λ}(P
−1) =

r2. (Here ∆(y) is the formal intersection of P−1Ω(y) and L, as defined in
Proposition 4.2.) Further, with Pr2 as in Proposition 4.1, we have

χL(detP ′r2)
∑
Y ′,G

χL(detG)θ(Lr0,r2 ; τ)|
(
G−1 Y ′ tG

tG

)
|Pr2

=
∑
Y ′,G

χL(detG)θ(Lr0,r2 ; τ)|
(
G−1 Y ′ tG

tG

)
.

Proof. We let Y ′ = W + Y and G = G0G1 vary as described in Proposition
4.1. We let Uy vary over a set of representatives for the equivalence classes
in Lr0,r2 , E over Kr0,r2 ; we let Λ, Gy,Λ vary as in Proposition 4.2. We have
G1 ∈ Kr0,r2 , so summing first on G0, G1 and then on Y,W, y,Λ, E, we can

replace E by EG1 and Y by G1Y
tG1. Then we can rearrange the order of

summation to get∑
Y ′,G

χL(detG)θ(Lr0,r2 ; τ)|
(
G−1 Y ′ tG

tG

)
=
∑
y,Λ

∑
E,G0

e{Q[UyGy,ΛEG
−1
0 ]τ}

·
∑
G1,W

e{Q[UyGy,ΛEG1]W}
∑
Y

e{Q[UyGy,ΛEG1]Y }.

The sum on Y tests whether Ω(y) is even N-integral, returningN(P)r0(n−r2+1)

if the answer is yes, and returning 0 otherwise. So now suppose Ω(y) is
even N-integral; fix the parameter Λ and consider the sum on G1,W . As
E ∈ Kr0,r2 , with

(z1 · · · zn) = (x1 · · · xm)UyGy,ΛE,

we have Ω(y) = Oz1 ⊕ · · · ⊕ Ozn and

Λ = Pz1⊕ · · · ⊕Pzr0 ⊕Ozr0+1⊕ · · · ⊕Ozn−r2 ⊕P−1zn−r2+1⊕ · · · ⊕P−1zn.

Thus the sum on G1,W is α′j(Ω(y),Λ). For fixed y,Λ, we have

Ω(y) = Ω(Uy) = Ω(UyGy,Λ)

and as E,G0 vary, EG−1
0 varies over GLn(O); thus the sum on E,G0 is

e{Ω(y), τ}.
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To prove the final claim, we simply note that χL(detP ′r2)(detP ′r2)k = 1,

e{Q[UyC]P ′r2τ
tP ′r2} = e{Q[UyCP

′
r2 ]τ}, and CP ′r2 varies over GLn(O) as C

does. �

Next, we combine Propositions 4.1 and 4.3.

Theorem 4.4. We have

θ(L; τ)|S1 · · ·Sj(P−1)Tj(P
2)

=
∑
Ω,Λ

N(P)E
′
j(Ω,Λ)χ∗L(P)e

′
j(Ω,Λ)α′j(Ω,Λ) e{Ω, τ}

where Ω varies over all sublattices of P−1L with formal rank n, Λ varies
over all lattices so that PΩ ⊆ Λ ⊆ ∆ (∆ the formal intersection of P−1Ω
and L), and with r0 = mult{Ω:Λ}(P), r2 = mult{Ω:Λ}(P

−1), we have

E′j(Ω,Λ) = k(r2 − r0 − j) + r0(n− r2 + 1), e′j(Ω,Λ) = r2 − r0 − j.

Proof. Suppose that Ω is a sublattice of P−1L with formal rank n, and
take y1, . . . , yn ∈ P−1L so that Ω = Oy1 ⊕ · · · ⊕ Oyn. By Proposition
4.2, we can assume that for some d0, d1, we have y1, . . . , yd0 ∈ P−1L r
L, yd0+1, . . . , yd0+d1 ∈ L r PL, yd0+d1+1, . . . , yn ∈ PL with y1, . . . , yd0+d1

linearly independent in KL. Let ∆ be the formal intersection of P−1Ω and L,
and suppose Λ is a lattice with PΩ ⊆ Λ ⊆ ∆. Then with r0 = mult{Ω:Λ}(P),

r2 = mult{Ω:Λ}(P
−1), we have r0 ≥ d0 and r2 ≤ n − d0 − d1; hence with

Uy the matrix so that (y1 · · · yn) = (x1 · · · xm)Uy, we have Uy ∈ Lr0,r2 . If

r0 +r2 > j then α′j(Ω,Λ) = 0 as there are no dimension j−r0−r2 subspaces

of (Ω ∩ Λ)/P(Ω + Λ). The theorem now follows from Propositions 4.1 and
4.3. �

To complete the character sums in our description of the action of Tj(P
2),

we have the following.

Definitions. With P a prime ideal, set

T̃j(P
2) = N(P)j(k−n−1)

j∑
`=0

χ∗L(P)`N(P)k`β(n−`, j−`)S1 · · ·S`(P−1)T`(P
2)

where T0(P2) is the identity map and

β(r, a) = βP(r, a) =
a−1∏
i=0

(N(P)r−i − 1)

(N(P)a−i − 1)
.

(So β(r, a) is the number of dimension a subpaces of a dimension r space
over O/P.) To ease notation, we set F = O/P. Set

η(r, a) = ηP(r, a) =

r−1∏
i=a

(N(P)r−i −N(P)a−i);

so η(r, 0) = |GLr(F)| and for 1 ≤ a ≤ r and C ∈ Fr,a with rankC = a,
η(r, a) is the number of ways to extend C to an element of GLr(F).

With Ω a subspace of P−1L with formal rank n, and Λ a lattice so that
PΩ ⊆ Λ ⊆ ∆ (where ∆ is the formal intersection of P−1Ω and L), let
r0 = mult{Ω:Λ}(P), r2 = mult{Ω:Λ}(P

−1), r = r0 + r2. With Ω1 = (Ω ∩



HECKE OPERATORS ON HILBERT-SIEGEL THETA SERIES 23

Λ)/P(Ω + Λ), we consider Ω1 as a quadratic space over F, with symmetric
bilinear form B′ = η′Bq (modulo P); when P - 2, we take the quadratic
form on Ω1 to be q′ = η′q (modulo P), and when P|2, we take q′ = 1

2η
′q

(and then we have the relation q′(x + y) = q′(x) + q′(y) + B′(x, y)). With
Λ1 a subspace of Ω1, we say Λ1 is totally isotropic if q′(x) = 0 ∈ F for every
x ∈ Λ1.

This gives us the analogue of the first step in the proof of Theorem 2.1
[8].

Theorem 4.5. Suppose that P is a prime ideal with P - N . We have

θ(L; τ)|T̃j(P2)

=
∑

Ω

 ∑
PΩ⊆Λ⊆∆

χ∗(P)ej(Ω,Λ)N(P)Ej(Ω,Λ)αj(Ω,Λ)

 e{Ω, τ}

where the sum is over all even N-integral sublattices Ω of P−1L with formal
rank n, and ∆ is the formal intersection of P−1Ω and L. Also, with r0 =
mult{Ω:Λ}(P) and r2 = mult{Ω:Λ}(P

−1), we take ej(Ω,Λ) = j + r2 − r0 and
Ej(Ω,Λ) = k(j+r2−r0)+r0(n−r2+1)+(j−r0−r2)(j−r0−r2+1)/2−j(n+1),
and αj(Ω,Λ) is the number of totally isotropic, codimension n− j subspaces
of (Ω ∩ Λ)/P(Ω + Λ) which has the quadratic form q′ as defined above.

Proof. Take Ω ⊆ P−1L to have formal rank n, and fix Λ so that PΩ ⊆ Λ ⊆ ∆
where ∆ is the formal intersection of P−1Ω and L. Set r0 = mult{Ω:Λ}(P),

r2 = mult{Ω:Λ}(P
−1), and r = r0 + r2. Assume that the quadratic form q

restricted to Ω is even N-integral. Given Theorem 4.4 and the definition of

T̃j(P
2), we want to evaluate

j∑
`=0

β(n− `, j − `)α′`(Ω,Λ).

First suppose that P - 2; set F = O/P. Take Ω1 = (Λ∩Ω)/P(Λ + Ω); as
discussed above, we consider Ω1 as a dimension n − r vector space over F
equipped with the quadratic form q′ = η′q. Take V ∈ Fn−r,n−rsym so that Ω1 '
2V . In Theorem 4.1, we replace Q[G1]W by 2V [G′1]W1π

′β′ where G′1 varies

as in Theorem 4.1, and ”1 varies over O`−r,`−rsym modulo P so that detW1 6∈ P.
Then Ω1G

′
1

〈
I`−r, 0n−`

〉
varies over all codimension n − ` subspaces of Ω1,

and
α′`(Ω,Λ) =

∑
G′1,W1

e{2G′1V tG′1
〈
W1, 0n−`

〉
π′β′}.

For U ∈ Fa,asym, we set

r∗(V,U) = #{C ∈ Fr,a : tCV C = U, rankC = a }
and we set R∗(V,U) = r∗(V,U)/o(U) where O(U) is the orthogonal group
of U and o(U) = |O(U)|. (The condition that rankC = a ensures that U
describes the quadratic form on a rank a space.)

Now, given a dimension j′ = j − r subspace Ω′1 of Ω1, and a dimension a

subspace Λ1 of Ω′1 (0 ≤ a ≤ j′), there are matrices V ′ ∈ Fj
′,j′

sym and U ∈ Fa,asym

so that Ω′1 ' 2V ′ and Λ1 ' 2U . Also, for given Λ1 as above, there are
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β(n− r− a, j′− a) dimension j′ subspaces Ω′1 of Ω1 that contain Λ1. (Note
that if a = 0 then Λ1 = {0}.) Letting Λ1 vary over all dimension a subspaces
of Ω1 and sorting Λ1 and Ω′1 by isometry classes, we get∑

clsU∈Fa,a
sym

β(n− r − a, j − r − a)R∗(V,U)

=
∑

clsU∈Fa,a
sym

∑
clsV ′∈Fj−r,j−r

sym

R∗(V, V ′)R∗(V ′, U).

Thus
j−r∑
a=0

β(n− r − a, j − r − a)α′`(Ω,Λ)

=

j−r∑
a=0

β(n− r − a, j − r − a)
∑

clsU∈Fa,a
sym

R∗(V,U)
∑

W1∈Fa,a
sym

detW1 6=0

e{2π′β′UW1}

=
∑

clsV ′∈Fj−r,j−r
sym

R∗(V, V ′)

j−r∑
a=0

∑
clsU∈Fa,a

sym

R∗(V ′, U)
∑

W1∈Fa,a
sym

detW1 6=0

e{2π′β′UW1}.

We now fix V ′ ∈ Fj−r,j−rsym , and to ease notation, we set j′ = j − r. We
want to show that

j−r∑
a=0

∑
clsU∈Fa,a

sym

R∗(V ′, U)
∑

W ′∈Fa,a
sym

detW ′ 6=0

e{2π′β′UW ′}

=
∑

Y ∈Fj′,j′
sym

e{2V ′Y π′β′}.

We know that GLj′(F) acts by conjugation on Fj
′,j′

sym , and thus Fj
′,j′

sym is par-
titioned into orbits (i.e. isometry classes) with representatives

0j′ ,
〈
Ic, 0j′−c

〉
,
〈
Jc, 0j′−c

〉
, 1 ≤ c ≤ j′

where Jc =
〈
Ic−1, ω

〉
, and ω ∈ O with

(
ω
P

)
= −1 (this can be deduced, for

instance, from 92:1 of [5]). Also, with U ∈ Fj
′,j′

sym , as G varies over GLj′(F ),
tGUG varies o(U) times over the distinct matrices in the isometry class of
U . Thus we get∑

Y ∈Fj′,j′
sym

e{2V ′Y π′β′}

= 1 +

j′∑
a=1

∑
G∈GLj′ (F)

1

o(Ia ⊥ 0j′−a)
e{2V ′ tG

〈
Ia, 0j′−a

〉
Gπ′β′}

+

j′∑
a=1

∑
G∈GLj′ (F)

1

o(Ja ⊥ 0j′−a)
e{2V ′ tG

〈
Ja, 0j′−a

〉
Gπ′β′}.
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Now fix a, 1 ≤ a ≤ j′. With UG the upper left a × a block of GV ′ tG, we
have ∑

G∈GLj′ (F)

e{2V ′ tG
〈
Ia, 0j′−a

〉
Gπ′β′}

=
∑

G∈GLj′ (F)

e{2GV ′ tG
〈
Ia, 0j′−a

〉
π′β′}

=
∑

G∈GLj′ (F)

e{2UGIaπ′β′}.

Given U ∈ Fa,asym, the number of G ∈ GLj′(F) so that UG = U is

#{C ∈ Fj
′,a : tCV ′C = U, rankC = a } = r∗(V ′, U)η(j′, a)

as the number of ways to extend C ∈ Fj′,a to an element of GLj′(F) is 0 if
rankC < a, and η(j′, a) otherwise. So (for a still fixed),

∑
G∈GLj′ (F)

1

o(Ia ⊥ 0j′−a)
e{2V ′ tG

〈
Ia, 0j′−a

〉
Gπ′β′}

=
∑

U∈Fa,a
sym

η(j′, a)

o(Ia ⊥ 0j′−a)
r∗(V ′, U) e{2Uπ′β′}.

We now sort the U in the above sum into isometry classes, and note that
for U0 ∈ Fa,asym,

∑
U∈clsU0

r∗(V ′, U) e{2Uπ′β′}

=
∑

G∈O(U0)\GLa(F)

r∗(V ′, U0) e{2 tGU0Gπ
′β′}

=
∑

G∈GLa(F)

R∗(V,U0) e{2 tGU0Gπ
′β′}.

It is also not difficult to check the o(Ia ⊥ 0j′,a) = o(Ia)η(j′, a) so

∑
U∈Fa,a

sym

η(j′, a)

o(Ia ⊥ 0j′−a)
r∗(V ′, U) e{2Uπ′β′}

=
∑

clsU∈Fa,a
sym

R∗(V ′, U)

o(Ia)

∑
G∈GLa(F)

e{2UGIa tGπ′β′}

=
∑

clsU∈Fa,a
sym

R∗(V ′, U)
∑

W ′∈cls Ia

e{2UW ′π′β′}.
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Similar arguments hold when Ia is replaced by Ja, giving us∑
Y ∈Fj′,j′

sym

e{2V ′Y π′β′} = 1 +

j′∑
a=1

∑
clsU∈Fa,a

sym

R∗(V ′, U)
∑

W1∈cls Ia

e{2UW1π
′β′}

+

j′∑
a=1

∑
clsU∈Fa,a

sym

R∗(V ′, U)
∑

W1∈cls Ja

e{2UW1π
′β′}

=

j′∑
a=0

∑
clsUFa,a

sym

R∗(V ′, U)
∑

W1∈Fa,a
sym

detW1 6=0

e{2UW1π
′β′}.

The sum
∑

Y ∈Fj′,j′
sym

e{2V ′Y π′β′} tests whether V ′ is 0 modulo P, returning

N(P)j
′(j′+1)/2 if V ′ passes this test and 0 otherwise. So remembering that

j′ = j − r, we see that

j−r∑
a=0

β(n− r − a, j − r − a)α′`(Ω,Λ) = N(P)(j−r)(j−r+1)/2R∗(V, 0j−r).

Also recall that V is chosen so that Ω1 ' 2V where V is determined by Ω
and Λ as described at the beginning of the proof; so αj(Ω,Λ) = R∗(V, 0j−r),
and the theorem follows in the case that P - 2.

Now suppose P|2. Then the above argument carries over almost directly,
with just a few adjustments. First, with Ω1 as above and q′ = 1

2η
′q, we

take V ∈ On−r,n−rsym to encode q′ as follows. With Ω1 = Fx1 ⊕ · · · ⊕ Fxn−r,
the s, t-entry of V is B′(xs, xt) when s 6= t, and 2q′(xs) when s = t. With
G,G′ ∈ On−r,n−r so that G ≡ G′ (P) and detG 6∈ P, the diagonal of GV tG
is congruent modulo 2P to the diagonal of G′V tG′. So for G ∈ GLn−r(F),
we have G ∈ O(V ) if GV tG and V are congruent modulo P with the
diagonal of GV tG and the diagonal of V congruent modulo 2P. With Ω′1
a subspace of Ω1 of dimension j′, we take V ′ to be a matrix encoding q′ on
Ω′1, and r∗(V, V ′) is the number of matrices C ∈ Fn−r,j′ with rank j′ so that
tCV C ≡ V ′ (P) with the diagonal of tCV C congruent modulo 2P to the
diagonal of V ′. Then the above argument when calP - 2 carries over to the
case when P|2. �

5. Average theta series as Hecke eigenforms

In this section, we adapt the local arguments from [7] and [8] to Hilbert-
Siegel theta series. As a first step, we adapt Proposition 2.1 from [8].
Throughout, P is a prime ideal with P - N .

Definitions. For r,m ∈ Z with r > 0, set

δ(m, r) =
r−1∏
i=0

(N(P)m−i + 1), µ(m, r) =
r−1∏
i=0

(N(P)m−i − 1).

We take δ(m, 0) = 1 = µ(m, 0).
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Proposition 5.1. Take j ∈ Z+ so that j ≤ n. We have

θ(L; τ)|T̃j(P2) =
∑

Ω

c̃j(Ω) e{Ω, τ}

where Ω varies over all even η-integral free sublattices of P−1L with formal
rank n, and c̃j(Ω) is defined as follows. First, as in Proposition 4.2, we
decompose Ω as Oy1 ⊕ · · · ⊕ Oyn where

yi ∈


P−1Lr L if 1 ≤ i ≤ d0,

LrPL if d0 < i ≤ d0 + d1,

PL otherwise

with y1, . . . , yd0+d1 linearly independent in KL (so d0, d1 are invariants of
Ω). Set d2 = n− d0− d1. With Ω1 = Oyd0+1⊕ · · · ⊕Oyd0+d1, let Ω1 denote
the space Ω1/PΩ1 equipped with the quadratic form η′q. Set

E = E′(`, t,Ω) = `(k − d0 − d1) + `(`− 1)/2 + t(k − n) + t(t+ 1)/2.

(a) Say χ∗(P) = 1. Then

c̃j(Ω) =
∑
`,t

N(P)Eϕ`(Ω1)δ(k − d0 − `− 1, t)β(d2, t)

· β(n− d0 − `− t, j − d0 − `− t).
(b) Say χ∗(P) = −1. Then

c̃j(Ω) =
∑
`,t

(−1)`N(P)Eϕ`(Ω1)β(k − d0 − `− 1, t)µ(d2, t)

· β(n− d0 − `− t, j − d0 − `− t).
Proof. Beginning with Theorem 4.5, the proof proceeds exactly as the proof
of Proposition 1.4 [7] and of Proposition 2.1 [8]. This consists of constructing
all lattices Λ with PΩ ⊆ Λ ⊆ ∆ where ∆ is the formal intersection of P−1Ω
and L. The construction is in two stages; in each stage, we work over an
O/P-space. Thus the theory is essentially the same as when we work over
Z/pZ. The theory of quadratic forms over finite fields that we use can be
found in [4] and [5]. �

Next we have the analogue of Proposition 1.5 [7] and Proposition 2.2 [8].

Proposition 5.2. Take j ∈ Z+ so that j ≤ n; also, assume that j ≤ k
if χ∗(P) = 1, and j < k if χ∗(P) = −1. We let Kj vary over all lattices
so that PL ⊆ Kj ⊆ P−1L, mult{L:Kj}(P

−1) = mult{L:Kj}(P) = j, and
Kj ∈ genL. Then ∑

Kj

θ(Kj ; τ) =
∑

Ω

bj(Ω) e{Ω, τ}

where Ω varies over all even N-integral free sublattices of P−1L with for-
mal rank n, and decomposing Ω is in Proposition 5.1, we have invariants
d0, d1, d2 attached to Ω; then if χ∗(P) = 1, we have

bj(Ω) = N(P)(j−d0)(j−d0−1)/2
∑
`

N(P)`(k−j−d1+`)ϕ`(Ω1)

· δ(k − d0 − `− 1, j − d0 − `)β(k − d0 − d1, j − d0 − `),
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and if χ∗(P) = −1, we have

bj(Ω) = N(P)(j−d0)(j−d0−1)/2
∑
`

(−1)`N(P)`(k−j−d1+`)ϕ`(Ω1)

· β(k − d0 − `− 1, j − d0 − `)δ(k − d0 − d1, j − d0 − `).

Proof. Again, all the arguments are local. Here we equip L/PL with the
quadratic form η′q so that L/PL is a regular quadratic space over O/P,
with L/PL hyperbolic if and only if χ∗(P) = 1. Then for Ω as in the
proposition, all the Kj containing Ω are constructed. An element needed to
complete the proof is an analogue of Lemma 4.1 [8]; again, the proof for this
is completely local. �

Now Propositions 5.1 and 5.2 above, together with the proof of Theorem
2.3 [8] gives us the following.

Theorem 5.3. Take j ∈ Z+ so that j ≤ n; also, assume that j ≤ k if
χ∗(P) = 1, and j < k if χ∗(P) = −1. Set

ui(j) = (−1)iN(P)i(i−1)/2β(n− j + i, i), T ′j(P
2) =

∑
0≤i≤j

ui(j)T̃j−i(P
2),

vi(j) =

{
(−1)iβ(k − n+ i− 1, i)δ(k − j + i− 1, i) if χ∗(P) = 1,

(−1)iδ(k − n+ i− 1, i)β(k − j + i− 1, i) if χ∗(P) = −1

Then

θ(L)|T ′j(P2) =
∑

0≤i≤j
vi(j)

∑
Kj−i

θ(Kj−i)


where Kj−i varies subject to PL ⊆ Kj−i ⊆ P−1L,

mult{L:Kj−i}(P
−1) = mult{L:Kj−i}(P) = j − i,

and Kj−i ∈ genL.

The final step is average over the genus of L; we now define the average
theta series.

Definition. For L′ a lattice in the genus of L, let o(L′) denote the order of
the orthogonal group of L′. Define the average theta series attached to the
genus of L as

θ(genL; τ) =
∑

clsL′∈genL

1

o(L′)
θ(L′; τ)

where clsL′ denotes the isometry class of L′. (Note that sometimes people
normalise the average theta series by 1

massL where massL =
∑

clsL′∈genL
1

o(L′) .)

We now state our main result; the proof combines those of Corollary
2.4 and Theorem 3.3 [8] and primarily consists of elementary combinatorial
arguments over a finite field.

Corollary 5.4. Recall that P is a prime ideal with P - N , and 1 ≤ j ≤ n.
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(a) Suppose that j ≤ k if χ∗(P) = 1, and j < k if χ∗(P) = −1. We
have

θ(genL)|T ′j(P2) = λj(P
2)θ(genL)

where

λj(P
2) =

{
N(P)j(k−n)+j(j−1)/2β(n, j)δ(k − 1, j) if χ∗(P) = 1,

N(P)j(k−n)+j(j−1)/2β(n, j)µ(k − 1, j) if χ∗(P) = −1.

(b) Suppose that j > k if χ∗(P) = 1, and j ≥ k if χ∗(P) = −1. Then

θ(genL)|T ′j(P2) = 0.
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